Complex Basic Operations			
Operation	Regular form	Polar to Cartesian form	Exponential form
Z	a + ib	$r(\cos\theta + i\sin\theta)$	re ^{iθ}
$z_1 + z_2$	(a+c) + i(b+d)	$\sqrt{(a+c)^2 + (b+d)^2} \angle \tan^{-1}\left(\frac{b+d}{a+c}\right)$	$r_1e^{i\theta_1}+r_2e^{i\theta_2}$
$z_1 - z_2$	$(\mathbf{a} - \mathbf{c}) + i(b - d)$	$\sqrt{(a-c)^2 + (b-d)^2} \angle \tan^{-1}\left(\frac{b-d}{a-c}\right)$	$r_1 e^{i\theta_1} - r_2 e^{i\theta_2}$
<i>z</i> ₁ <i>z</i> ₂	(ac-bd)+i(ad+bc)	$r_1r_2[\cos(\theta_1+\theta_2)+i\sin(\theta_1+\theta_2)]$	$r_1 r_2 e^{i(\theta_1 + \theta_2)}$
$\frac{Z_1}{Z_2}$	$\frac{(ac+bd)+i(bc-ad)}{c^2+d^2}$	$\frac{r_1}{r_2}[\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2)]$	$\frac{r_1}{r_2}e^{i(\theta_1-\theta_2)}$
$\frac{1}{z}$	$\frac{a}{a^2+b^2} - i\frac{b}{a^2+b^2}$	$\frac{1}{r}(\cos\theta - i\sin\theta)$	$\frac{1}{r}e^{-i\theta}$
z^2	$(a^2 - b^2) + i2ab$	$r^2(\cos 2\theta + i\sin 2\theta)$	$r^2 e^{i2\theta}$
\sqrt{Z}	$\frac{1}{\sqrt{2}}\left(\sqrt{r+a} + i\sqrt{r-a}\right)$	$\sqrt{r}\left(\cos\frac{\theta}{2}+i\sin\frac{\theta}{2}\right)$	$\sqrt{r}e^{irac{ heta}{2}}$
Z^n	$(a+ib)^n$	$r^n(\cos n\theta + i\sin n\theta)$	$r^n e^{in(\theta+2m\pi)}$
$\sqrt[n]{Z}$	$\sqrt[n]{(a+ib)}$	$\sqrt[n]{r}\left(\cos\frac{\theta+2k\pi}{n}+i\sin\frac{\theta+2k\pi}{n}\right)$	$r\frac{1}{n}e^{i\left(rac{ heta+2k\pi}{n} ight)}$
$z_1^{Z_2}$	$(a+ib)^{(c+id)} = (a^2+b^2)^{\frac{(c+id)}{2}}e^{i(c+id)\theta}$ $r^c e^{-d\theta}[\cos(d\ln r + c\theta + 2ck\pi) + i\sin(d\ln r + c\theta + 2ck\pi)]$ $e^{Z_2\ln(Z_1)}$		
ln z	$\ln(re^{i\theta}) = \ln[re^{i(\theta + 2n\pi)}] = \ln r + i(\theta + 2n\pi) \qquad z \neq 0$		
$\log_{z_2} z_1$	$\frac{\ln z_1}{\ln z_2} = \frac{\ln(a+ib)}{\ln(c+id)}$		
<i>x</i> ^{<i>z</i>}	$x^{a}[\cos(b\ln x) + i\sin(b\ln x)]$		$e^{z\ln x} = x^a e^{i(b\ln x)}$
ez	$e^a(\cos b + i\sin b)$	$e^{z+i2\pi n}$	e ^a e ^{ib}
<u>₹</u> conjugate	a-ib	$r(\cos\theta - i\sin\theta)$	re ^{-iθ}
$z_1 = a + ib$	$z_2 = c + id$ $\arg(z) = \theta$	$v = \tan^{-1}\left(\frac{b}{a}\right) + 2n\pi$ $r = \sqrt{a^2 + b^2}$	$k = 0, 1 \dots n - 1$

 $m, n = 0, 1, 2 \dots any integer$

Complex Trigonometric Functions			
sin z	sin(a) cosh(b) + i cos(a) sinh(b)	$\frac{e^{iz}-e^{-iz}}{i2}$	$-i \sinh(iz)$
cos z	$\cos(a)\cosh(b) - i\sin(a)\sinh(b)$	$\frac{e^{iz} + e^{-iz}}{2}$	cosh(<i>iz</i>)
tan z	$\frac{\sin z}{\cos z}$	$\frac{(e^{iz} - e^{-iz})}{i(e^{iz} + e^{-iz})}$	$-i \tanh(iz)$
cot z	$\frac{\cos z}{\sin z} = \frac{1}{\tan z}$	$\frac{i(e^{iz} + e^{-iz})}{e^{iz} - e^{-iz}}$	i coth(iz)
sec z	$\frac{1}{\cos z}$	$\frac{2}{e^{iz} + e^{-iz}}$	sech(<i>iz</i>)
CSC Z	$\frac{1}{\sin z}$	$\frac{i2}{e^{iz} - e^{-iz}}$	i csch(iz)

Complex Hyperbolic Functions				
sinh z	$\sinh(a)\cos(b) + i\cosh(a)\sin(b)$	$\frac{e^z - e^{-z}}{2}$	$-i\sin(iz)$	
cosh z	$\cosh(a)\cos(b) + i \sinh(a)\sin(b)$	$\frac{e^z + e^{-z}}{2}$	cos(iz)	
tanh z	$\frac{\sinh z}{\cosh z}$	$\frac{e^z - e^{-z}}{e^z + e^{-z}}$	$-i \tan(iz)$	
coth z	$\frac{\cosh z}{\sinh z} = \frac{1}{\tanh z}$	$\frac{e^z + e^{-z}}{e^z - e^{-z}}$	i cot(iz)	
sech z	$\frac{1}{\cosh z}$	$\frac{2}{e^z + e^{-z}}$	sec(iz)	
csch z	$\frac{1}{\sinh z}$	$\frac{2}{e^z - e^{-z}}$	i csc(iz)	

Complex Inverse Trigonometric Functions				
arc sin z	$-i\ln\left(iz\pm\sqrt{1-z^2}\right)$	$\frac{\pi}{2} - \cos^{-1} z$	$\csc^{-1}\left(\frac{1}{z}\right)$	$-i \sinh^{-1}(iz)$
arc cos z	$-i\ln\left(z\pm i\sqrt{1-z^2}\right)$	$\frac{\pi}{2} - \sin^{-1} z$	$\sec^{-1}\left(\frac{1}{z}\right)$	$\pm i \cosh^{-1}(z)$
arc tan z	$\frac{i}{2}\ln\left(\frac{i+z}{i-z}\right) = \frac{i}{2}\ln\left(\frac{1-iz}{1+iz}\right)$	$\frac{\pi}{2} - \cot^{-1} z$	$\cot^{-1}\left(\frac{1}{z}\right)$	$-i \tanh^{-1}(iz)$
arc cot <i>z</i>	$\frac{1}{2i}\ln\left(\frac{z+i}{z-i}\right)$	$\frac{\pi}{2} - \tan^{-1} z$	$\tan^{-1}\left(\frac{1}{z}\right)$	$i \operatorname{coth}^{-1}(iz)$
arc sec z	$\frac{1}{i} \ln \left(\frac{1 + \sqrt{1 - z^2}}{z} \right)$	$\frac{\pi}{2} - \csc^{-1} z$	$\cos^{-1}\left(\frac{1}{z}\right)$	$\pm i \operatorname{sech}^{-1}(z)$
arc csc z	$\frac{1}{i} \ln \left(\frac{i + \sqrt{z^2 - 1}}{z} \right)$	$\frac{\pi}{2} - \sec^{-1} z$	$\sin^{-1}\left(\frac{1}{z}\right)$	$i \operatorname{csch}^{-1}(iz)$

Complex Inverse Hyperbolic Functions				
arc sinh z	$\ln\left(z\pm\sqrt{z^2+1}\right)$	$\operatorname{csch}^{-1}\left(\frac{1}{z}\right)$	$-i\sin^{-1}(iz)$	
arc cosh z	$\ln\left(z\pm\sqrt{z^2-1}\right) = \ln\left(z+\sqrt{z+1}\sqrt{z-1}\right)$	$\operatorname{sech}^{-1}\left(\frac{1}{z}\right)$	$\pm i \cos^{-1}(z)$	
arc tanh z	$\frac{1}{2}\ln\left(\frac{1+z}{1-z}\right) = \frac{1}{2}[\ln(1+z) - \ln(1-z)]$	$\operatorname{coth}^{-1}\left(\frac{1}{z}\right)$	$-i \tan^{-1}(iz)$	
arc coth z	$\frac{1}{2}\ln\left(\frac{z+1}{z-1}\right) = \frac{1}{2}\left[\ln\left(1+\frac{1}{z}\right) - \ln\left(1-\frac{1}{z}\right)\right]$	$\tanh^{-1}\left(\frac{1}{z}\right)$	$i \cot^{-1}(iz)$	
arc sech z	$\ln\left(\frac{1\pm\sqrt{1-z^2}}{z}\right)$	$\cosh^{-1}\left(\frac{1}{z}\right)$	$\pm i \sec^{-1}(z)$	
arc csch z	$\ln\left(\frac{1\pm\sqrt{1+z^2}}{z}\right)$	$\sinh^{-1}\left(\frac{1}{z}\right)$	$i \csc^{-1}(iz)$	

Trigonometric Relations		
$\sin(z_1 \pm z_2)$	$\sin z_1 \cos z_2 \pm \cos z_1 \sin z_2$	
$\cos(z_1 \pm z_2)$	$\cos z_1 \cos z_2 \mp \sin z_1 \sin z_2$	
$\tan(z_1 \pm z_2)$	$\frac{\tan z_1 \pm \tan z_2}{1 \mp \tan z_1 \tan z_2}$	

Complex Trigonometric and Hyperbolic Function Relations				
sin z	$\sin(z+2\pi n)$	$-\sin(-z)$	$\cos\left(\frac{\pi}{2} - z\right) = -\cos\left(\frac{\pi}{2} + z\right)$	
COS Z	$\cos(z+2\pi n)$	$\cos(-z)$	$\sin\left(\frac{\pi}{2} + z\right) = \sin\left(\frac{\pi}{2} - z\right)$	
tan z	$\tan(z+\pi n)$	$-\tan(-z)$	$\cot\left(\frac{\pi}{2} - z\right) = -\cot\left(\frac{\pi}{2} + z\right)$	
cot z	$\cot(z + \pi n)$	$-\cot(-z)$	$\tan\left(\frac{\pi}{2} - z\right) = -\tan\left(\frac{\pi}{2} + z\right)$	
CSC Z	$\csc(z+2\pi n)$	$-\csc(-z)$	$\sec\left(\frac{\pi}{2}-z\right) = -\sec\left(\frac{\pi}{2}+z\right)$	
sec z	$\sec(z+2\pi n)$	sec(-z)	$\csc\left(\frac{\pi}{2} - z\right) = \csc\left(\frac{\pi}{2} + z\right)$	

Complex equations summary

$\sinh(-z) = -\sinh z$
$\cosh(-z) = \cosh z$
$\tanh(-z) = -\tanh z$

$\sin^2 z + \cos^2 z = 1$
$1 + \tan^2 z = \sec^2 z$
$1 + \cot^2 z = \csc^2 z$

$$\sin iz = i \sinh z$$
$$\cos iz = \cosh z$$
$$\tan iz = i \tanh z$$

$$cosh^{2}z - sinh^{2}z = 1$$

$$1 - tanh^{2}z = sech^{2}z$$

$$coth^{2}z - 1 = csch^{2-1}z$$

$$\sinh iz = i \sin z$$
$$\cosh iz = \cos z$$
$$\tanh iz = i \tan z$$

$$\sin 2z = 2 \sin z \cos z$$
$$\cos 2z = \cos^2 z - \sin^2 z$$
$$\tan 2z = \frac{2 \tan z}{1 - \tan^2 z}$$

$\sin\left(\frac{z}{2}\right) = \sqrt{\frac{1 - \cos z}{2}}$	$\sinh\left(\frac{z}{2}\right) = \sqrt{\frac{\cosh(z) - 1}{2}}$
$\cos\left(\frac{z}{2}\right) = \sqrt{\frac{1+\cos z}{2}}$	$\cosh\left(\frac{z}{2}\right) = \sqrt{\frac{1+\cosh z}{2}}$
$\tan\left(\frac{z}{2}\right) = \frac{1 - \cos z}{\sin z} = \frac{\sin z}{1 + \cos z}$	$\tanh\left(\frac{z}{2}\right) = \frac{1 - \cosh z}{\sinh z}$

 $\cos(2z) + i\sin(2z) = (\cos^2 z - \sin^2 z) + i(2\sin z \cos z) = e^{i2z}$

Powers			
$i^0 = 1$	$i^0 = 1$		
$i^1 = i$	$i^{-1} = -i$		
$i^2 = -1$	$i^{-2} = -1$		
$i^3 = -i$	$i^{-3} = i$		
$i^4 = 1$	$i^{-4} = 1$		
$i^{5} = i$	$i^{-5} = -i$		
$i^{6} = -1$	$i^{-6} = -1$		
$i^{7} = -i$	$i^{-7} = i$		
$i^8 = 1$	$i^{-8} = 1$		
$i^{9} = i$	$i^{-9} = -i$		
$i^{10} = -1$	$i^{-10} = -1$		
Ge	neral		
$i^{4n} = e^{i(2n)\pi} = 1$	$i^{-4n} = -i$		
$i^{4n+1} = e^{i\left(2n+\frac{1}{2}\right)\pi} = i$	$i^{-(4n+1)} = -1$		
$i^{4n+2} = e^{i(2n+1)\pi} = -1$	$i^{-(4n+2)} = i$		
$i^{4n+3} = e^{i\left(2n+\frac{3}{2}\right)\pi} = -i$	$i^{-(4n+3)} = 1$		

n=0, 1, 2 ... (integer number)

Logar	ithms
$\ln z = \ln z + i[Arg z + 2k\pi]$ $k = 0, \pm 1, \pm 2 \dots$	$z = e^{\ln z}$
$\ln\left(\frac{1}{z}\right) = -\ln z$	$y^x = e^{x \ln y}$
$\ln(z_1 z_2) = \ln z_1 + \ln z_2$	$z^a = e^{a \ln z}$
$\ln\left(\frac{z_1}{z_2}\right) = \ln z_1 - \ln z_2$	$e^{-z} = \frac{1}{e^z}$
$\log_n z = \frac{\log z}{\log n}$	$e^{i\pi}=-1$
$\log_i x = \frac{-i2\ln x}{\pi}$	$ e^{z} = e^{x}$
$\overline{\log z} = \log(\overline{z})$	$i^i = e^{i \ln i} = e^{-\frac{\pi}{2} + 2\pi n}$
$\ln(e^z) = z + i2n\pi$	$e = 2.71828183 \dots$
$\ln(1)=0$	$e^{i\theta} = \cos\theta + i\sin\theta$
$\ln(-1) = \ln(e^{i\pi}) = i\pi$	$e^{iz} = \cos z + i \sin z$
$\ln(0) = -infinity$	$e^{-iz} = \cos z - i \sin z$
$\ln(i) = i\left(\frac{\pi}{2} + 2k\pi\right)$	$e^z = \cosh z + \sinh z$
$\ln(-i) = -i\left(\frac{\pi}{2} + 2k\pi\right)$	
$\ln(\infty) = infinity$	$\ln(-a) = \ln a + i\pi$

AmBrSoft Cor	nplex equations summary v2.7
Cartesian CoordinateA complex number can be viewed as apoint or a vector on a two dimensionalCartesian coordinate system, called thecomplex plane or Argand diagram. $z = x + iy$ Polar CoordinateThe polar coordinate system uses angleand vector length r of a point from theorigin of the axe. $z = re^{i\theta}$ r - modulus (absolute value of z) $r = \sqrt{x^2 + y^2}$ θ - phase or the argument of z $z = \arg(z) = \tan^{-1}\frac{y}{x}$ Polar to Cartesian	y (Imaginary Axis) y $Z=X+iy$ -X θ X (Real Axis) -V
$\frac{1}{z} = r(\cos\theta + i\sin\theta)$	$df = f(z + \Lambda z) - f(z)$
Complex DerivativeDerivative of a complex function $f(z)$ at apoint z_0	$\frac{df}{dz} = f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$ $\Delta z \text{ approch zero in any way possible}$
Cauchy Riemann EquationsA necessary condition for a function $f(z) = u(x, y) + iv(x, y)$ To be analytic at a point $Z=X+iy$ is thatthe Cauchy Riemann equations are satisfiedat that point.	$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \qquad \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ $(u_x = v_y) \qquad \qquad (u_y = -v_x)$
<u>Cauchy Equation in Polar Form</u>	$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta} \qquad \qquad \frac{1}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial v}{\partial r}$
Harmonic Function Function f(x,y) is harmonic if the first and second partial derivatives are continuous in a given domain and the Laplace's equation is satisfied.	$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$ $(f_{xx} + f_{yy} = 0)$
Harmonic Complex Function The real and the imaginary parts of a complex function is satisfying the Laplace equation	$\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = 0 \qquad \qquad \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$
<u>Cauchy Integral</u> If $f(z)$ is analytic in a closed domain <i>C</i> and z_0 is a point interior to C then:	$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz$
Taylor Series If $f(z)$ is infinitely differentiable at a point z_0 then it can be expressed as a power series.	$f(z_0) = \frac{f'(z_0)}{1!}(z - z_0) + \frac{f''(z_0)}{2!}(z - z_0)^2 + \dots$ $f(z_0) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!}(z - z_0)^n$

Oscillation Complex number describing oscillation. ω – angular velocity	$e^{j(\omega t + \varphi)} = \cos(\omega t + \varphi) + j\sin(\omega t + \varphi)$
t – time φ – initial phase of starting point	

Series expansion of co	mplex functions
$e^{z} = 1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \dots + \frac{z^{n}}{n!} = 1 + \sum_{n=1}^{\infty} \frac{z^{n}}{n!}$	for all z
$e^{-z} = 1 - z + \frac{z^2}{2!} - \frac{z^3}{3!} + \dots = \sum_{n=1}^{\infty} (-1)^n \frac{z^n}{n!}$	for all z
$e^{\frac{1}{z}} = 1 + \frac{1}{z} + \frac{1}{2! \ z^2} + \frac{1}{3! \ z^2} + \dots = \sum_{n=0}^{\infty} \frac{1}{n! \ z^n}$	$z \neq 0$
$e^{i\theta} = 1 + i\theta - \frac{\theta^2}{2!} - i\frac{\theta^3}{3!} + \dots = 1 + \sum_{n=1}^{\infty} \frac{(i\theta)^n}{n!}$	
$\ln z = (z-1) - \frac{(z-1)^2}{2} + \frac{(z-1)^3}{3} - \frac{(z-1)^4}{4} + \dots$	$=\sum_{n=1}^{\infty}(-1)^{n-1}\frac{(z-1)^n}{n}$
$\ln(1-z) = -z - \frac{z^2}{2} - \frac{z^3}{3} - \frac{z^4}{4} - \dots = -\sum_{n=1}^{\infty} \frac{z^n}{n}$	for z < 1
$\ln(1+z) = z - \frac{z^2}{2} + \frac{z^3}{3} - \frac{z^4}{4} + \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^n}{n}$	for $ z \le 1$ $z \ne -1$
$\ln\frac{1}{1-z} = z + \frac{z^2}{2} + \frac{z^3}{3} + \frac{z^4}{4} + \dots = \sum_{n=1}^{\infty} \frac{z^n}{n}$	$ z \leq 1$
$\ln \frac{z}{z-1} = \frac{1}{z} + \frac{1}{2z^2} + \frac{1}{3z^3} + \dots = \sum_{n=1}^{\infty} \frac{1}{nz^n}$	z > 1
$\frac{1}{1-z} = 1 + z + z^2 + z^3 + \dots = \sum_{n=0}^{\infty} z^n$	for z < 1
$\frac{1}{1+z} = 1 - z + z^2 - z^3 + \dots = \sum_{n=0}^{\infty} (-1)^n z^n$	z < 1
$\overline{\frac{z}{(1-z)^2}} = z + 2z^2 + 3z^3 + 4z^4 + \dots = \sum_{n=1}^{\infty} nz^n$	for $ z < 1$

$$\begin{aligned} \sin z &= z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} \dots = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} & -\infty < z < \infty \\ \sin^{-1} z &= z + \left(\frac{1}{2}\right) \frac{z^3}{3} + \left(\frac{1 \cdot 3}{2 \cdot 4}\right) \frac{z^5}{5} + \left(\left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right) \frac{z^7}{7}\right) + \dots = \sum_{n=0}^{\infty} \frac{(2n)!}{2^{2n}(n!)^2} \frac{z^{2n+1}}{(2n+1)} & \text{for } |z| \le 1 \\ \sinh z &= z + \frac{z^3}{3!} + \frac{z^5}{5!} + \frac{z^7}{7!} + \dots = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!} & \text{for all } z \\ \sinh^{-1} z &= z - \frac{1}{6} z^3 + \frac{3}{40} z^5 - \frac{5}{112} z^7 + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{(2n)!}{4^n (n!)^2 (2n+1)} z^{2n+1} & \text{for } |z| < 1 \end{aligned}$$

$$\begin{aligned} \cos z &= 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!} & -\infty < z < \infty \\ \cos^{-1} z &= \frac{\pi}{2} - z - \frac{1}{6} z^3 - \frac{3}{40} z^5 - \frac{5}{112} z^7 - \dots = \frac{\pi}{2} - \sum_{n=0}^{\infty} \frac{(2n)!}{2^{2n} (n!)^2} \frac{z^{2n+1}}{(2n+1)} & for \ |z| \le 1 \\ \cosh z &= 1 + \frac{z^2}{2!} + \frac{z^4}{4!} + \frac{z^6}{6!} + \dots = 1 + \sum_{n=1}^{\infty} \frac{z^{2n}}{(2n)!} & for \ all \ z \\ \cosh^{-1} z &= \ln(2z) - \frac{1}{4z^2} - \frac{3}{32z^4} - \frac{15}{288z^6} - \dots & for \ |z| > 1 \end{aligned}$$

$$\begin{aligned} \tan z &= z + \frac{1}{3}z^3 + \frac{2}{15}z^5 + \frac{17}{315}z^7 + \frac{62}{2835}z^9 \dots = \sum_{n=1}^{\infty} \frac{B_{2n}(1-4^n)}{(2n)!} z^{2n-1} \qquad |z| < \frac{\pi}{2} \\ \tan^{-1}z &= z - \frac{z^3}{3} + \frac{z^5}{5} - \frac{z^7}{7} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{2n+1} \qquad |z| \le 1 \quad z \ne i, \qquad z \ne -i \\ \tanh z &= z - \frac{1}{3}z^3 + \frac{2}{15}z^5 - \frac{17}{315}z^7 + \dots = \sum_{n=1}^{\infty} \frac{B_{2n}4^n(4^n-1)}{(2n)!} z^{2n-1} \qquad for \ |z| < \frac{\pi}{2} \\ \tanh^{-1}z &= z + \frac{z^3}{3} + \frac{z^5}{5} + \frac{z^7}{7} + \dots = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{2n+1} \qquad for \ |z| < 1 \end{aligned}$$

V2.7

$$\begin{aligned} \cot z &= \frac{1}{z} - \frac{1}{3}z - \frac{1}{45}z^3 - \frac{2}{945}z^5 - \frac{1}{4725}z^7 - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n} B_{2n} z^{2n-1}}{(2n)!} & \text{for } 0 < |z| < \pi \\ \cot^{-1} z &= \frac{\pi}{2} - \tan^{-1} z = \frac{\pi}{2} - \left(z - \frac{z^3}{3} + \frac{z^5}{5} - \frac{z^7}{7} + \dots\right) = \frac{\pi}{2} - \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{2n+1} & |z| \le 1 \quad z \neq \pm i \\ \coth z &= \frac{1}{z} + \frac{1}{3}z - \frac{1}{45}z^3 + \frac{2}{945}z^5 - \frac{1}{4725}z^7 + \dots = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2^{2n} B_{2n} z^{2n-1}}{(2n)!} & 0 < |z| < \pi \\ \coth^{-1} z &= \tanh^{-1}\left(\frac{1}{z}\right) \end{aligned}$$

$$\begin{aligned} \csc z &= \frac{1}{z} + \frac{1}{6}z + \frac{7}{360}z^3 + \frac{31}{15120}z^5 + \dots = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}2(2^{2n-1} - 1)B_{2n}z^{2n-1}}{(2n)!} \quad for \ 0 < |z| < \pi \\ \csc^{-1}z &= \sin^{-1}\left(\frac{1}{z}\right) = \frac{1}{z} + \left(\frac{1}{2}\right)\frac{1}{3z^3} + \left(\frac{1 \cdot 3}{2 \cdot 4}\right)\frac{1}{5z^5} + \dots = \sum_{n=0}^{\infty} \frac{(2n)!}{2^{2n}(n!)^2}\frac{1}{(2n+1)z^{(2n+1)}} \\ \operatorname{csch} z &= \frac{1}{z} - \frac{1}{6}z + \frac{7}{360}z^3 - \frac{31}{15120}z^5 + \dots = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2\left(1 - 2^{(2n-1)}\right)}{(2n)!}B_{2n}z^{(2n-1)} \quad 0 < |z| < \pi \\ \operatorname{csch}^{-1}z &= \ln 2 - \ln z + \frac{1}{4}z^2 - \frac{3}{32}z^4 + \frac{5}{96}z^6 - \dots \end{aligned}$$

$$\begin{split} & \sec z = 1 - \frac{1}{2}z^2 + \frac{5}{24}z^4 - \frac{61}{720}z^6 + \frac{277}{8064}z^8 - \ldots = \sum_{n=0}^{\infty} (-1)^n \frac{E_{2n}}{(2n)!} z^{2n} \qquad for \ |z| < \frac{\pi}{2} \\ & \sec^{-1} z = \frac{\pi}{2} - \left(\frac{1}{z} + \left(\frac{1}{2}\right)\frac{1}{3z^3} + \left(\frac{1\cdot 3}{2\cdot 4}\right)\frac{1}{5z^5} + \cdots\right) = \frac{\pi}{2} - \sum_{n=0}^{\infty} \frac{(2n)!}{2^{2n}(n!)^2}\frac{1}{(2n+1)z^{(2n+1)}} \quad |z| \ge 1 \\ & \operatorname{sech} z = 1 - \frac{1}{2}z^2 + \frac{5}{24}z^4 - \frac{61}{720}z^6 + \frac{277}{8064}z^8 + \ldots = \sum_{n=0}^{\infty} \frac{E_{2n}z^{2n}}{(2n)!} \qquad |z| < \frac{\pi}{2} \\ & \operatorname{sech}^{-1} z = \ln 2 - \ln z - \frac{1}{4}z^2 - \frac{3}{32}z^4 \ldots \end{split}$$

$$B_n \text{ nth Bernoulli number: } B_0 = 1 \quad B_1 = -\frac{1}{2} \quad B_2 = \frac{1}{6} \quad B_4 = -\frac{1}{30} \quad B_6 = \frac{1}{42} \quad B_8 = -\frac{1}{30}$$
$$B_{10} = \frac{5}{66} \quad B_{12} = -\frac{691}{2,730} \quad B_{14} = \frac{7}{6} \quad B_{16} = -\frac{3,617}{510} \quad B_{18} = \frac{43,867}{798}$$
$$E_n \text{ nth Euler number: } \quad E_0 = 1 \quad E_2 = -1 \quad E_4 = 5 \quad E_6 = -61 \quad E_8 = 1,385 \quad E_{10} = -50,521$$
$$E_{12} = 2,702,765 \quad E_{14} = -199,360,981 \quad E_{16} = 19,391,512,145$$

Derivatives of inverse trigor	nometric and hyperbolic functions
$\frac{d}{dz}\sin^{-1}(z) = \frac{1}{\sqrt{1-z^2}}$	$\frac{d}{dz}\sinh^{-1}(z) = \frac{1}{\sqrt{1+z^2}}$
$\frac{d}{dz}\cos^{-1}(z) = -\frac{1}{\sqrt{1-z^2}}$	$\frac{d}{dz}\cosh^{-1}(z) = \frac{1}{\sqrt{z+1}\sqrt{z-1}}$
$\frac{d}{dz}\tan^{-1}(z) = \frac{1}{1+z^2}$	$\frac{d}{dz}\tanh^{-1}(z) = \frac{1}{1-z^2}$
$\frac{d}{dz}\cot^{-1}(z) = -\frac{1}{1+z^2}$	$\frac{d}{dz} \coth^{-1}(z) = \frac{1}{1 - z^2}$
$\frac{d}{dz}\csc^{-1}(z) = -\frac{1}{z\sqrt{z^2 - 1}}$	$\frac{d}{dz}\operatorname{csch}^{-1}(z) = -\frac{1}{z^2\sqrt{1+\frac{1}{z^2}}}$
$\frac{d}{dz}\sec^{-1}(z) = \frac{1}{z\sqrt{z^2 - 1}}$	$\frac{d}{dz}\operatorname{sech}^{-1}(z) = -\frac{1}{z(z+1)\sqrt{\frac{1-z}{1+z}}}$

Derivatives of trigonometric and hyperbolic functions	
$\frac{d}{dz}\sin(z) = \cos(z)$	$\frac{d}{dz}\sinh(z) = \cosh(z)$
$\frac{d}{dz}\cos(z) = -\sin(z)$	$\frac{d}{dz}\cosh(z) = \sinh(z)$
$\frac{d}{dz}\tan(z) = \sec^2(z)$	$\frac{d}{dz}\tanh(z) = 1 - \tanh^2(z) = \operatorname{sech}^2(z)$
$\frac{d}{dz}\cot(z) = -\csc^2(z)$	$\frac{d}{dz} \coth(z) = -\operatorname{csch}^2(z)$
$\frac{d}{dz}\csc(z) = -\csc(z)\cot(z)$	$\frac{d}{dz}\operatorname{csch}(z) = -\operatorname{csch}(z)\operatorname{coth}(z)$
$\frac{d}{dz}\sec(z) = \sec(z)\tan(z)$	$\frac{d}{dz}\operatorname{sech}(z) = -\operatorname{sech}(z)\tanh(z)$

Derivatives of common complex functions	
$\frac{d}{dz}z^a = az^{a-1}$	$\frac{d}{dz}z^{z} = z^{z}(1+\ln z)$
$\frac{d}{dz}a^z = a^z \ln(a)$	$\frac{d}{dz}\ln z = \frac{1}{z}$
$\frac{d}{dz}e^z = e^z$	$\frac{d}{dz}\log_a z = \frac{1}{z\ln a}$

Software documentation

One source of confusion when dealing with complex numbers are the multiple solutions to several complex functions calculations, this software manages multiple solutions as follows:

Function	AmBrSoft – Complex Calculator
$\arg(z) = \theta$	The software enables the use of two presentation of
	argument angles:
	Present of negative (regular) angles $-\pi < \theta \le \pi$
	This is the default setup for calculations and corresponds to
	most definitions of complex calculations.
	Present positive angles $0 < \theta < 2\pi$
	In this way all angles will appear as positive values
	counterclockwise from the real x axis.
$\ln(z) = \ln r + i(\theta + 2k\pi)$	θ is restricted to a single value (k=0) in the range:
	For negative angles (default) $-\pi < heta < \pi$
	For positive angles $0 < \theta < 2\pi$
e ^z	Has a single value
$\sin z$, $\cos z$, $\tan z$, $\cot z$, $\sec z$, $\csc z$	Has a single value
$\sin^{-1} z$, $\cos^{-1} z$, $\sec^{-1} z$, $\csc z$	Has 2 solutions in the range
$\tan^{-1} z$, $\cot^{-1} z$	Solution is single value
z ⁿ	Has a single value if n is integer
	Solution has n values and the angle differs by $\frac{2\pi}{2}$ radians
$n\sqrt{Z}$	liser can browse between different solutions by pressing
	The button.
Calculations accuracy	All calculations are performed up to 16 digits.